
BDDC Domain Decomposition Algorithms

Olof B. Widlund
Courant Institute, New York University

75th Anniversary of
Mathematics of Computation

November 3, 2018

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC stands for Balancing Domain Decomposition by
Constraints and this family of algorithms was introduced by
Clark Dohrmann in 2003 following the introduction of the
FETI–DP (Dual Primal Finite Element Tearing and
Interconnecting) algorithms by Charbel Farhat et al in 2000.
Dohrmann remains a main provider of ideas and analysis.

In this talk, I will introduce the basics of BDDC, give examples
of successful applications and talk about some recent work.

My last few PhD students were all involved in the
development of the BDDC family. I have also worked with
Dohrmann and with Beirão da Veiga, Pavarino, Scacchi,
Zampini, Oh, and Calvo. Recently, the focus has been on
small coarse problems for BDDC, adaptive choices of the
coarse problems, and isogeometric analysis problems for
elasticity including the almost incompressible case..

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC stands for Balancing Domain Decomposition by
Constraints and this family of algorithms was introduced by
Clark Dohrmann in 2003 following the introduction of the
FETI–DP (Dual Primal Finite Element Tearing and
Interconnecting) algorithms by Charbel Farhat et al in 2000.
Dohrmann remains a main provider of ideas and analysis.

In this talk, I will introduce the basics of BDDC, give examples
of successful applications and talk about some recent work.

My last few PhD students were all involved in the
development of the BDDC family. I have also worked with
Dohrmann and with Beirão da Veiga, Pavarino, Scacchi,
Zampini, Oh, and Calvo. Recently, the focus has been on
small coarse problems for BDDC, adaptive choices of the
coarse problems, and isogeometric analysis problems for
elasticity including the almost incompressible case..

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC stands for Balancing Domain Decomposition by
Constraints and this family of algorithms was introduced by
Clark Dohrmann in 2003 following the introduction of the
FETI–DP (Dual Primal Finite Element Tearing and
Interconnecting) algorithms by Charbel Farhat et al in 2000.
Dohrmann remains a main provider of ideas and analysis.

In this talk, I will introduce the basics of BDDC, give examples
of successful applications and talk about some recent work.

My last few PhD students were all involved in the
development of the BDDC family. I have also worked with
Dohrmann and with Beirão da Veiga, Pavarino, Scacchi,
Zampini, Oh, and Calvo. Recently, the focus has been on
small coarse problems for BDDC, adaptive choices of the
coarse problems, and isogeometric analysis problems for
elasticity including the almost incompressible case..

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC domain decomposition algorithms for finite element
approximations for a variety of elliptic problems with very
many degrees of freedom.

Among applications, elasticity, problems formulated in
H(curl), H(div), and Reissner-Mindlin plates.

Mostly lowest order finite element methods for selfadjoint
elliptic problems but we have also helped develop solvers for
isogeometric analysis also for higher order methods.

All this aims at developing preconditioners for the stiffness
matrices. These approximate inverses are then combined with
conjugate gradients or other Krylov space methods.

Primarily interested in hard problems with very many
subdomains and having convergence rates independent of that
number and with rates that decrease slowly with the size of
the subdomain problems. Many bounds independent of jumps
in coefficients between subdomains.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC domain decomposition algorithms for finite element
approximations for a variety of elliptic problems with very
many degrees of freedom.

Among applications, elasticity, problems formulated in
H(curl), H(div), and Reissner-Mindlin plates.

Mostly lowest order finite element methods for selfadjoint
elliptic problems but we have also helped develop solvers for
isogeometric analysis also for higher order methods.

All this aims at developing preconditioners for the stiffness
matrices. These approximate inverses are then combined with
conjugate gradients or other Krylov space methods.

Primarily interested in hard problems with very many
subdomains and having convergence rates independent of that
number and with rates that decrease slowly with the size of
the subdomain problems. Many bounds independent of jumps
in coefficients between subdomains.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC domain decomposition algorithms for finite element
approximations for a variety of elliptic problems with very
many degrees of freedom.

Among applications, elasticity, problems formulated in
H(curl), H(div), and Reissner-Mindlin plates.

Mostly lowest order finite element methods for selfadjoint
elliptic problems but we have also helped develop solvers for
isogeometric analysis also for higher order methods.

All this aims at developing preconditioners for the stiffness
matrices. These approximate inverses are then combined with
conjugate gradients or other Krylov space methods.

Primarily interested in hard problems with very many
subdomains and having convergence rates independent of that
number and with rates that decrease slowly with the size of
the subdomain problems. Many bounds independent of jumps
in coefficients between subdomains.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC domain decomposition algorithms for finite element
approximations for a variety of elliptic problems with very
many degrees of freedom.

Among applications, elasticity, problems formulated in
H(curl), H(div), and Reissner-Mindlin plates.

Mostly lowest order finite element methods for selfadjoint
elliptic problems but we have also helped develop solvers for
isogeometric analysis also for higher order methods.

All this aims at developing preconditioners for the stiffness
matrices. These approximate inverses are then combined with
conjugate gradients or other Krylov space methods.

Primarily interested in hard problems with very many
subdomains and having convergence rates independent of that
number and with rates that decrease slowly with the size of
the subdomain problems. Many bounds independent of jumps
in coefficients between subdomains.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Problems considered

BDDC domain decomposition algorithms for finite element
approximations for a variety of elliptic problems with very
many degrees of freedom.

Among applications, elasticity, problems formulated in
H(curl), H(div), and Reissner-Mindlin plates.

Mostly lowest order finite element methods for selfadjoint
elliptic problems but we have also helped develop solvers for
isogeometric analysis also for higher order methods.

All this aims at developing preconditioners for the stiffness
matrices. These approximate inverses are then combined with
conjugate gradients or other Krylov space methods.

Primarily interested in hard problems with very many
subdomains and having convergence rates independent of that
number and with rates that decrease slowly with the size of
the subdomain problems. Many bounds independent of jumps
in coefficients between subdomains.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC, finite element meshes, and equivalence classes

BDDC algorithms work on decompositions of the domain Ω of
the elliptic problem into non-overlapping subdomains Ωi , each
often with tens of thousands of degrees of freedom. In
between the subdomains the interface Γ. The local interface
of Ωi : Γi := ∂Ωi \ ∂Ω. Γ does not cut any elements.

Many of the finite element nodes are interior to individual
subdomains while others belong to several subdomain
interfaces.
The nodes on Γ are partitioned into equivalence classes of sets
of indices of the local interfaces Γi to which they belong. For
3D and nodal finite elements, we have classes of face nodes,
associated with two local interfaces, and classes of edge nodes
and subdomain vertex nodes.
For H(curl) and Nédélec (edge) elements, only equivalence
classes of element edges on subdomain faces and on
subdomain edges. For H(div) and Raviart-Thomas elements,
only degrees of freedom for element faces.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC, finite element meshes, and equivalence classes

BDDC algorithms work on decompositions of the domain Ω of
the elliptic problem into non-overlapping subdomains Ωi , each
often with tens of thousands of degrees of freedom. In
between the subdomains the interface Γ. The local interface
of Ωi : Γi := ∂Ωi \ ∂Ω. Γ does not cut any elements.
Many of the finite element nodes are interior to individual
subdomains while others belong to several subdomain
interfaces.

The nodes on Γ are partitioned into equivalence classes of sets
of indices of the local interfaces Γi to which they belong. For
3D and nodal finite elements, we have classes of face nodes,
associated with two local interfaces, and classes of edge nodes
and subdomain vertex nodes.
For H(curl) and Nédélec (edge) elements, only equivalence
classes of element edges on subdomain faces and on
subdomain edges. For H(div) and Raviart-Thomas elements,
only degrees of freedom for element faces.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC, finite element meshes, and equivalence classes

BDDC algorithms work on decompositions of the domain Ω of
the elliptic problem into non-overlapping subdomains Ωi , each
often with tens of thousands of degrees of freedom. In
between the subdomains the interface Γ. The local interface
of Ωi : Γi := ∂Ωi \ ∂Ω. Γ does not cut any elements.
Many of the finite element nodes are interior to individual
subdomains while others belong to several subdomain
interfaces.
The nodes on Γ are partitioned into equivalence classes of sets
of indices of the local interfaces Γi to which they belong. For
3D and nodal finite elements, we have classes of face nodes,
associated with two local interfaces, and classes of edge nodes
and subdomain vertex nodes.

For H(curl) and Nédélec (edge) elements, only equivalence
classes of element edges on subdomain faces and on
subdomain edges. For H(div) and Raviart-Thomas elements,
only degrees of freedom for element faces.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC, finite element meshes, and equivalence classes

BDDC algorithms work on decompositions of the domain Ω of
the elliptic problem into non-overlapping subdomains Ωi , each
often with tens of thousands of degrees of freedom. In
between the subdomains the interface Γ. The local interface
of Ωi : Γi := ∂Ωi \ ∂Ω. Γ does not cut any elements.
Many of the finite element nodes are interior to individual
subdomains while others belong to several subdomain
interfaces.
The nodes on Γ are partitioned into equivalence classes of sets
of indices of the local interfaces Γi to which they belong. For
3D and nodal finite elements, we have classes of face nodes,
associated with two local interfaces, and classes of edge nodes
and subdomain vertex nodes.
For H(curl) and Nédélec (edge) elements, only equivalence
classes of element edges on subdomain faces and on
subdomain edges. For H(div) and Raviart-Thomas elements,
only degrees of freedom for element faces.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partial assembly

These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

The BDDC and FETI–DP families are related algorithmically
and have a common theoretical foundation. They are based
on using partially subassembled stiffness matrices assembled
from the subdomain stiffness matrices A(i). We will first look
at a simple 2D nodal finite element problem.

The nodes of Ωi ∪ Γi are divided into those in the interior (I)
and those on the interface (Γ). The interface set is further
divided into a primal set (Π) and a dual set (∆).

When developing theory, we can now handle quite irregular
subdomains, in particular, in 2D. In 3D, we obtain bounds in
terms of the Lipschitz parameters of the subdomains, often
obtained by a mesh partitioner.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partial assembly

These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

The BDDC and FETI–DP families are related algorithmically
and have a common theoretical foundation. They are based
on using partially subassembled stiffness matrices assembled
from the subdomain stiffness matrices A(i). We will first look
at a simple 2D nodal finite element problem.

The nodes of Ωi ∪ Γi are divided into those in the interior (I)
and those on the interface (Γ). The interface set is further
divided into a primal set (Π) and a dual set (∆).

When developing theory, we can now handle quite irregular
subdomains, in particular, in 2D. In 3D, we obtain bounds in
terms of the Lipschitz parameters of the subdomains, often
obtained by a mesh partitioner.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partial assembly

These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

The BDDC and FETI–DP families are related algorithmically
and have a common theoretical foundation. They are based
on using partially subassembled stiffness matrices assembled
from the subdomain stiffness matrices A(i). We will first look
at a simple 2D nodal finite element problem.

The nodes of Ωi ∪ Γi are divided into those in the interior (I)
and those on the interface (Γ). The interface set is further
divided into a primal set (Π) and a dual set (∆).

When developing theory, we can now handle quite irregular
subdomains, in particular, in 2D. In 3D, we obtain bounds in
terms of the Lipschitz parameters of the subdomains, often
obtained by a mesh partitioner.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partial assembly

These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

The BDDC and FETI–DP families are related algorithmically
and have a common theoretical foundation. They are based
on using partially subassembled stiffness matrices assembled
from the subdomain stiffness matrices A(i). We will first look
at a simple 2D nodal finite element problem.

The nodes of Ωi ∪ Γi are divided into those in the interior (I)
and those on the interface (Γ). The interface set is further
divided into a primal set (Π) and a dual set (∆).

When developing theory, we can now handle quite irregular
subdomains, in particular, in 2D. In 3D, we obtain bounds in
terms of the Lipschitz parameters of the subdomains, often
obtained by a mesh partitioner.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Torn 2D scalar elliptic problem

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

i
j

l
k

Olof B. Widlund BDDC Domain Decomposition Algorithms

Subdomain matrices

Represent the subdomain stiffness matrix A(i) as A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ

 .

This matrix represents the energy contributed by Ωi .

We enforce continuity of the primal variables, as in the given
finite element model, but allow multiple values of the dual
variables when working with the partially subassembled model.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Subdomain matrices

Represent the subdomain stiffness matrix A(i) as A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ

 .

This matrix represents the energy contributed by Ωi .

We enforce continuity of the primal variables, as in the given
finite element model, but allow multiple values of the dual
variables when working with the partially subassembled model.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Subdomain matrices

Represent the subdomain stiffness matrix A(i) as A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ

 .

This matrix represents the energy contributed by Ωi .

We enforce continuity of the primal variables, as in the given
finite element model, but allow multiple values of the dual
variables when working with the partially subassembled model.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partially subassembled matrix

Maintain continuity of the primal variables at the vertices.
Partially subassemble and mark with tilde:

A
(1)
II A

(1)
I∆ A

(1)T
ΠI

A
(1)
∆I A

(1)
∆∆ A

(1)T
Π∆

. . .
...

A
(N)
II A

(N)
I∆ A

(N)T
ΠI

A
(N)
∆I A

(N)
∆∆ A

(N)T
Π∆

A
(1)
ΠI A

(1)
Π∆ · · · A

(N)
ΠI A

(N)
Π∆ ÃΠΠ

BDDC: After solving, enforce the continuity constraints by
using an averaging operator ED .
FETI–DP: Uses Lagrange multipliers. A saddle point problem
is then reduced to an equation for the Lagrange multipliers.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partially subassembled matrix

Maintain continuity of the primal variables at the vertices.
Partially subassemble and mark with tilde:

A
(1)
II A

(1)
I∆ A

(1)T
ΠI

A
(1)
∆I A

(1)
∆∆ A

(1)T
Π∆

. . .
...

A
(N)
II A

(N)
I∆ A

(N)T
ΠI

A
(N)
∆I A

(N)
∆∆ A

(N)T
Π∆

A
(1)
ΠI A

(1)
Π∆ · · · A

(N)
ΠI A

(N)
Π∆ ÃΠΠ

BDDC: After solving, enforce the continuity constraints by
using an averaging operator ED .

FETI–DP: Uses Lagrange multipliers. A saddle point problem
is then reduced to an equation for the Lagrange multipliers.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Partially subassembled matrix

Maintain continuity of the primal variables at the vertices.
Partially subassemble and mark with tilde:

A
(1)
II A

(1)
I∆ A

(1)T
ΠI

A
(1)
∆I A

(1)
∆∆ A

(1)T
Π∆

. . .
...

A
(N)
II A

(N)
I∆ A

(N)T
ΠI

A
(N)
∆I A

(N)
∆∆ A

(N)T
Π∆

A
(1)
ΠI A

(1)
Π∆ · · · A

(N)
ΠI A

(N)
Π∆ ÃΠΠ

BDDC: After solving, enforce the continuity constraints by
using an averaging operator ED .
FETI–DP: Uses Lagrange multipliers. A saddle point problem
is then reduced to an equation for the Lagrange multipliers.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More on BDDC and FETI–DP

The partially subassembled stiffness matrix of this alternative
finite element model is used to define preconditioners; the
resulting linear system is much cheaper to solve than the fully
assembled system. Primal variables provide a global
component of these preconditioners. Makes matrices
invertible.

In a FETI–DP algorithm, the continuity at the edge nodes
enforced by using Lagrange multipliers and the rate of
convergence enhanced by also solving a Dirichlet problem on
each subdomain in each iteration. The conjugate gradient
algorithm is used to find accurate enough values of Lagrange
multipliers. There are subtle scaling issues.
In a BDDC algorithm, continuity is instead restored in each
iteration by computing a weighted average across the
interface. Can lead to non-zero residuals at nodes next to Γ. If
so, use a subdomain Dirichlet solve to eliminate them, in each
iteration.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More on BDDC and FETI–DP

The partially subassembled stiffness matrix of this alternative
finite element model is used to define preconditioners; the
resulting linear system is much cheaper to solve than the fully
assembled system. Primal variables provide a global
component of these preconditioners. Makes matrices
invertible.
In a FETI–DP algorithm, the continuity at the edge nodes
enforced by using Lagrange multipliers and the rate of
convergence enhanced by also solving a Dirichlet problem on
each subdomain in each iteration. The conjugate gradient
algorithm is used to find accurate enough values of Lagrange
multipliers. There are subtle scaling issues.

In a BDDC algorithm, continuity is instead restored in each
iteration by computing a weighted average across the
interface. Can lead to non-zero residuals at nodes next to Γ. If
so, use a subdomain Dirichlet solve to eliminate them, in each
iteration.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More on BDDC and FETI–DP

The partially subassembled stiffness matrix of this alternative
finite element model is used to define preconditioners; the
resulting linear system is much cheaper to solve than the fully
assembled system. Primal variables provide a global
component of these preconditioners. Makes matrices
invertible.
In a FETI–DP algorithm, the continuity at the edge nodes
enforced by using Lagrange multipliers and the rate of
convergence enhanced by also solving a Dirichlet problem on
each subdomain in each iteration. The conjugate gradient
algorithm is used to find accurate enough values of Lagrange
multipliers. There are subtle scaling issues.
In a BDDC algorithm, continuity is instead restored in each
iteration by computing a weighted average across the
interface. Can lead to non-zero residuals at nodes next to Γ. If
so, use a subdomain Dirichlet solve to eliminate them, in each
iteration.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Alternative sets of primal constraints

For scalar second order elliptic equations in 2D, this approach
yields condition number of C (1 + log(H/h))2. Results can be
made independent of jumps in the coefficients, if the interface
averages chosen carefully.

Good numerical results in 2D but for competitive algorithms
in 3D, certain averages (and first order moments) of the
displacement over individual edges (and faces) should also
take common values across interface Γ. Same matrix structure
as before after a change of variables.

Reliable recipes exist for selecting small sets of primal
constraints for elasticity in 3D, which primarily use edge
averages and first order moments as primal constraints. High
quality PETSc-based codes have been developed by Stefano
Zampini and been successfully tested on very large systems.
Public domain software. Also great work by Klawonn’s group.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Alternative sets of primal constraints

For scalar second order elliptic equations in 2D, this approach
yields condition number of C (1 + log(H/h))2. Results can be
made independent of jumps in the coefficients, if the interface
averages chosen carefully.

Good numerical results in 2D but for competitive algorithms
in 3D, certain averages (and first order moments) of the
displacement over individual edges (and faces) should also
take common values across interface Γ. Same matrix structure
as before after a change of variables.

Reliable recipes exist for selecting small sets of primal
constraints for elasticity in 3D, which primarily use edge
averages and first order moments as primal constraints. High
quality PETSc-based codes have been developed by Stefano
Zampini and been successfully tested on very large systems.
Public domain software. Also great work by Klawonn’s group.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Alternative sets of primal constraints

For scalar second order elliptic equations in 2D, this approach
yields condition number of C (1 + log(H/h))2. Results can be
made independent of jumps in the coefficients, if the interface
averages chosen carefully.

Good numerical results in 2D but for competitive algorithms
in 3D, certain averages (and first order moments) of the
displacement over individual edges (and faces) should also
take common values across interface Γ. Same matrix structure
as before after a change of variables.

Reliable recipes exist for selecting small sets of primal
constraints for elasticity in 3D, which primarily use edge
averages and first order moments as primal constraints. High
quality PETSc-based codes have been developed by Stefano
Zampini and been successfully tested on very large systems.
Public domain software. Also great work by Klawonn’s group.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Product spaces

The BDDC and FETI–DP algorithms can be described in
terms of three product spaces of finite element
functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂WΓ.

WΓ: no constraints; ŴΓ: continuity at every point on Γ; W̃Γ:
common values of the primal variables.

Can change variables, explicitly introducing primal variables
and complementary sets of dual displacement variables.
Simplifies presentation and might make methods more robust.
After eliminating the interior variables, write the subdomain
Schur complements as

S (i) =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

Partially subassemble the S (i), obtaining S̃ and a global
problem.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Product spaces

The BDDC and FETI–DP algorithms can be described in
terms of three product spaces of finite element
functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂WΓ.

WΓ: no constraints; ŴΓ: continuity at every point on Γ; W̃Γ:
common values of the primal variables.
Can change variables, explicitly introducing primal variables
and complementary sets of dual displacement variables.
Simplifies presentation and might make methods more robust.

After eliminating the interior variables, write the subdomain
Schur complements as

S (i) =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

Partially subassemble the S (i), obtaining S̃ and a global
problem.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Product spaces

The BDDC and FETI–DP algorithms can be described in
terms of three product spaces of finite element
functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂WΓ.

WΓ: no constraints; ŴΓ: continuity at every point on Γ; W̃Γ:
common values of the primal variables.
Can change variables, explicitly introducing primal variables
and complementary sets of dual displacement variables.
Simplifies presentation and might make methods more robust.
After eliminating the interior variables, write the subdomain
Schur complements as

S (i) =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

Partially subassemble the S (i), obtaining S̃ and a global
problem.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Product spaces

The BDDC and FETI–DP algorithms can be described in
terms of three product spaces of finite element
functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂WΓ.

WΓ: no constraints; ŴΓ: continuity at every point on Γ; W̃Γ:
common values of the primal variables.
Can change variables, explicitly introducing primal variables
and complementary sets of dual displacement variables.
Simplifies presentation and might make methods more robust.
After eliminating the interior variables, write the subdomain
Schur complements as

S (i) =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

Partially subassemble the S (i), obtaining S̃ and a global
problem.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More details on BDDC

Work with W̃Γ and a set of primal constraints. At the end of
each iterative step, the approximate solution will be made
continuous at all nodal points of the interface; continuity is
restored by applying a weighted average operator ED , which
maps W̃Γ into ŴΓ.

In each iteration, first compute the residual of the fully
assembled Schur complement. Then apply ET

D to obtain
right-hand side of the partially subassembled linear system.
Solve this system and then apply ED .

This last step changes the values on Γ, unless the iteration
has converged, and can results in non-zero residuals at nodes
next to Γ.

In final step of each iteration, eliminate these residuals by
solving a Dirichlet problem on each of the subdomains.
Accelerate with preconditioned conjugate gradients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More details on BDDC

Work with W̃Γ and a set of primal constraints. At the end of
each iterative step, the approximate solution will be made
continuous at all nodal points of the interface; continuity is
restored by applying a weighted average operator ED , which
maps W̃Γ into ŴΓ.

In each iteration, first compute the residual of the fully
assembled Schur complement. Then apply ET

D to obtain
right-hand side of the partially subassembled linear system.
Solve this system and then apply ED .

This last step changes the values on Γ, unless the iteration
has converged, and can results in non-zero residuals at nodes
next to Γ.

In final step of each iteration, eliminate these residuals by
solving a Dirichlet problem on each of the subdomains.
Accelerate with preconditioned conjugate gradients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More details on BDDC

Work with W̃Γ and a set of primal constraints. At the end of
each iterative step, the approximate solution will be made
continuous at all nodal points of the interface; continuity is
restored by applying a weighted average operator ED , which
maps W̃Γ into ŴΓ.

In each iteration, first compute the residual of the fully
assembled Schur complement. Then apply ET

D to obtain
right-hand side of the partially subassembled linear system.
Solve this system and then apply ED .

This last step changes the values on Γ, unless the iteration
has converged, and can results in non-zero residuals at nodes
next to Γ.

In final step of each iteration, eliminate these residuals by
solving a Dirichlet problem on each of the subdomains.
Accelerate with preconditioned conjugate gradients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

More details on BDDC

Work with W̃Γ and a set of primal constraints. At the end of
each iterative step, the approximate solution will be made
continuous at all nodal points of the interface; continuity is
restored by applying a weighted average operator ED , which
maps W̃Γ into ŴΓ.

In each iteration, first compute the residual of the fully
assembled Schur complement. Then apply ET

D to obtain
right-hand side of the partially subassembled linear system.
Solve this system and then apply ED .

This last step changes the values on Γ, unless the iteration
has converged, and can results in non-zero residuals at nodes
next to Γ.

In final step of each iteration, eliminate these residuals by
solving a Dirichlet problem on each of the subdomains.
Accelerate with preconditioned conjugate gradients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

ED and some other operators

For any application, only an estimate of ‖ED‖S̃ is needed.

Let R̃Γ be the operator that finally subassembles S̃Γ :

ŜΓ = R̃ΓS̃ΓR̃
T
Γ .

Obtain R̃DΓ by scaling R̃Γ by a block diagonal scaling.

ED := R̃ΓR̃
T
DΓ and M−1

BDDC := R̃T
DΓS̃

−1R̃DΓ.

ED is a projection and R̃T
DΓR̃Γ = I .

Olof B. Widlund BDDC Domain Decomposition Algorithms

ED and some other operators

For any application, only an estimate of ‖ED‖S̃ is needed.

Let R̃Γ be the operator that finally subassembles S̃Γ :

ŜΓ = R̃ΓS̃ΓR̃
T
Γ .

Obtain R̃DΓ by scaling R̃Γ by a block diagonal scaling.

ED := R̃ΓR̃
T
DΓ and M−1

BDDC := R̃T
DΓS̃

−1R̃DΓ.

ED is a projection and R̃T
DΓR̃Γ = I .

Olof B. Widlund BDDC Domain Decomposition Algorithms

ED and some other operators

For any application, only an estimate of ‖ED‖S̃ is needed.

Let R̃Γ be the operator that finally subassembles S̃Γ :

ŜΓ = R̃ΓS̃ΓR̃
T
Γ .

Obtain R̃DΓ by scaling R̃Γ by a block diagonal scaling.

ED := R̃ΓR̃
T
DΓ and M−1

BDDC := R̃T
DΓS̃

−1R̃DΓ.

ED is a projection and R̃T
DΓR̃Γ = I .

Olof B. Widlund BDDC Domain Decomposition Algorithms

ED and some other operators

For any application, only an estimate of ‖ED‖S̃ is needed.

Let R̃Γ be the operator that finally subassembles S̃Γ :

ŜΓ = R̃ΓS̃ΓR̃
T
Γ .

Obtain R̃DΓ by scaling R̃Γ by a block diagonal scaling.

ED := R̃ΓR̃
T
DΓ and M−1

BDDC := R̃T
DΓS̃

−1R̃DΓ.

ED is a projection and R̃T
DΓR̃Γ = I .

Olof B. Widlund BDDC Domain Decomposition Algorithms

ED and some other operators

For any application, only an estimate of ‖ED‖S̃ is needed.

Let R̃Γ be the operator that finally subassembles S̃Γ :

ŜΓ = R̃ΓS̃ΓR̃
T
Γ .

Obtain R̃DΓ by scaling R̃Γ by a block diagonal scaling.

ED := R̃ΓR̃
T
DΓ and M−1

BDDC := R̃T
DΓS̃

−1R̃DΓ.

ED is a projection and R̃T
DΓR̃Γ = I .

Olof B. Widlund BDDC Domain Decomposition Algorithms

Condition number bounds

Lemma

(Lower bound)

uTMBDDCu ≤ uT S̃Γu, ∀u ∈ W̃Γ. (1)

Proof.

Let w = MBDDCu. Since R̃T
Γ R̃D,Γ = I , we have

uTMBDDCu ≤ uTw = uT R̃T
Γ R̃D,Γw = uT R̃T

Γ S̃ΓS̃
−1
Γ R̃D,Γw

≤ (R̃Γu, R̃Γu)
1/2

S̃Γ
(S̃−1

Γ R̃D,Γw , S̃
−1
Γ R̃D,Γw)

1/2

S̃Γ

= (uT R̃T
Γ S̃ΓR̃Γu)1/2(wT R̃T

D,ΓS̃
−1
Γ S̃ΓS̃

−1
Γ R̃D,Γw)1/2

= (uT S̃Γu)1/2(uTMBDDCu)1/2.

Square and cancel common factor.
Olof B. Widlund BDDC Domain Decomposition Algorithms

Condition number bounds

Lemma

(Upper bound) If |EDv |2S̃Γ
≤ CE |v |2S̃Γ

∀v ∈ W̃Γ, then

uT S̃Γu ≤ CEu
TMBDDCu ∀u ∈ W̃Γ. (2)

Proof.

uT S̃Γu = uT R̃T
Γ S̃ΓR̃Γu = uT R̃T

Γ S̃ΓR̃ΓM
−1
BDDCMBDDCu

=uT R̃T
Γ S̃ΓR̃ΓR̃

T
D,ΓS̃

−1
Γ R̃D,Γw

≤(R̃Γu, R̃Γu)
1/2

S̃Γ
(ED S̃

−1
Γ R̃D,Γw ,ED S̃

−1
Γ R̃D,Γw)

1/2

S̃Γ

≤(uT R̃T
Γ S̃ΓR̃Γu)1/2C

1/2
E (S̃−1

Γ R̃D,Γw , S̃
−1
Γ R̃D,Γw)

1/2

S̃Γ

=C
1/2
E (uT S̃Γu)1/2(uTMBDDCu)1/2,

where the last step follows as in the proof of Lemma 1.Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): DD20 paper, CPAM 69 with CRD.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, Dohrmann, and Zampini; Math. Comp. 87(310),

2018.

Papers on isogeometric elements, with Beirão da Veiga,
Pavarino, Scacchi, and Zampini: M3AS 23(6), SISC 36(3) and

39(1), M3AS 28(7). The deluxe variant is superior.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1).

Also work on DG by Dryja and Sarkis and by Chung and Kim.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Stiffness scaling in frequency space

New average operator ED across a face F ⊂ Γ, common to
two subdomains Ωi and Ωj , defined in terms of two Schur
complements:

S
(k)
FF := A

(k)
FF − A

(k)
FI A

(k)
II

−1
A

(k)
IF , k = i , j .

The deluxe averaging operator is then defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF)−1(S

(i)
FFw

(i) + S
(j)
FFw

(j)).

This action can be implemented by solving a Dirichlet problem
on Ωi ∪ Γij ∪ Ωj ; Γij interface between two subdomains. Adds
to the costs. But MUMS provides the Schur complements.

Similar formulas for subdomain edges and other equivalence
classes of interface variables. The operator ED is assembled
from these components.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Stiffness scaling in frequency space

New average operator ED across a face F ⊂ Γ, common to
two subdomains Ωi and Ωj , defined in terms of two Schur
complements:

S
(k)
FF := A

(k)
FF − A

(k)
FI A

(k)
II

−1
A

(k)
IF , k = i , j .

The deluxe averaging operator is then defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF)−1(S

(i)
FFw

(i) + S
(j)
FFw

(j)).

This action can be implemented by solving a Dirichlet problem
on Ωi ∪ Γij ∪ Ωj ; Γij interface between two subdomains. Adds
to the costs. But MUMS provides the Schur complements.

Similar formulas for subdomain edges and other equivalence
classes of interface variables. The operator ED is assembled
from these components.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Stiffness scaling in frequency space

New average operator ED across a face F ⊂ Γ, common to
two subdomains Ωi and Ωj , defined in terms of two Schur
complements:

S
(k)
FF := A

(k)
FF − A

(k)
FI A

(k)
II

−1
A

(k)
IF , k = i , j .

The deluxe averaging operator is then defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF)−1(S

(i)
FFw

(i) + S
(j)
FFw

(j)).

This action can be implemented by solving a Dirichlet problem
on Ωi ∪ Γij ∪ Ωj ; Γij interface between two subdomains. Adds
to the costs. But MUMS provides the Schur complements.

Similar formulas for subdomain edges and other equivalence
classes of interface variables. The operator ED is assembled
from these components.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Stiffness scaling in frequency space

New average operator ED across a face F ⊂ Γ, common to
two subdomains Ωi and Ωj , defined in terms of two Schur
complements:

S
(k)
FF := A

(k)
FF − A

(k)
FI A

(k)
II

−1
A

(k)
IF , k = i , j .

The deluxe averaging operator is then defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF)−1(S

(i)
FFw

(i) + S
(j)
FFw

(j)).

This action can be implemented by solving a Dirichlet problem
on Ωi ∪ Γij ∪ Ωj ; Γij interface between two subdomains. Adds
to the costs. But MUMS provides the Schur complements.

Similar formulas for subdomain edges and other equivalence
classes of interface variables. The operator ED is assembled
from these components.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

As we have shown, the core of any estimate for a BDDC
algorithm is the norm of the average operator ED . Known for
FETI–DP since 2002,

κ(M−1A) ≤ ‖ED‖S̃ .

We will show that essentially the analysis can be reduced to
bounds for individual subdomains.

Arbitrary jumps in two coefficients can often be
accommodated.

Analysis of traditional BDDC requires an extension theorem;
deluxe version does not.

In addition to this good choice of averaging, a good primal
space has to be chosen.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

As we have shown, the core of any estimate for a BDDC
algorithm is the norm of the average operator ED . Known for
FETI–DP since 2002,

κ(M−1A) ≤ ‖ED‖S̃ .

We will show that essentially the analysis can be reduced to
bounds for individual subdomains.

Arbitrary jumps in two coefficients can often be
accommodated.

Analysis of traditional BDDC requires an extension theorem;
deluxe version does not.

In addition to this good choice of averaging, a good primal
space has to be chosen.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

As we have shown, the core of any estimate for a BDDC
algorithm is the norm of the average operator ED . Known for
FETI–DP since 2002,

κ(M−1A) ≤ ‖ED‖S̃ .

We will show that essentially the analysis can be reduced to
bounds for individual subdomains.

Arbitrary jumps in two coefficients can often be
accommodated.

Analysis of traditional BDDC requires an extension theorem;
deluxe version does not.

In addition to this good choice of averaging, a good primal
space has to be chosen.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

As we have shown, the core of any estimate for a BDDC
algorithm is the norm of the average operator ED . Known for
FETI–DP since 2002,

κ(M−1A) ≤ ‖ED‖S̃ .

We will show that essentially the analysis can be reduced to
bounds for individual subdomains.

Arbitrary jumps in two coefficients can often be
accommodated.

Analysis of traditional BDDC requires an extension theorem;
deluxe version does not.

In addition to this good choice of averaging, a good primal
space has to be chosen.

Olof B. Widlund BDDC Domain Decomposition Algorithms

BDDC deluxe

As we have shown, the core of any estimate for a BDDC
algorithm is the norm of the average operator ED . Known for
FETI–DP since 2002,

κ(M−1A) ≤ ‖ED‖S̃ .

We will show that essentially the analysis can be reduced to
bounds for individual subdomains.

Arbitrary jumps in two coefficients can often be
accommodated.

Analysis of traditional BDDC requires an extension theorem;
deluxe version does not.

In addition to this good choice of averaging, a good primal
space has to be chosen.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Analysis of BDDC deluxe

Instead of estimating (RT
F w̄F)TS (i)RT

F w̄F , estimate the norm
of RT

F (w (i) − w̄F). By simple algebra, we find that

w
(i)
F − w̄F = (S

(i)
FF + S

(j)
FF)−1S

(j)
FF (w

(i)
F − w

(j)
F).

By more algebra, noting that RFS
(i)RT

F = S
(i)
FF :

(RT
F (w

(i)
F − w̄F))TS (i)(RT

F (w
(i)
F − w̄F)) =

(w
(i)
F −w

(j)
F)TS

(j)
FF (S

(i)
FF+S

(j)
FF)−1S

(i)
FF (S

(i)
FF+S

(j)
FF)−1S

(j)
FF (w

(i)
F −w

(ji
F)).

Add similar expression for the subdomain Ωj . More algebra
gives the bound:

(w
(i)
F − w

(j)
F)TS

(i)
FF : S

(j)
FF (w

(i)
F − w

(ji
F))

where
A : B := (A−1 + B−1)−1

is known as a parallel sum.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Analysis of BDDC deluxe

Instead of estimating (RT
F w̄F)TS (i)RT

F w̄F , estimate the norm
of RT

F (w (i) − w̄F). By simple algebra, we find that

w
(i)
F − w̄F = (S

(i)
FF + S

(j)
FF)−1S

(j)
FF (w

(i)
F − w

(j)
F).

By more algebra, noting that RFS
(i)RT

F = S
(i)
FF :

(RT
F (w

(i)
F − w̄F))TS (i)(RT

F (w
(i)
F − w̄F)) =

(w
(i)
F −w

(j)
F)TS

(j)
FF (S

(i)
FF+S

(j)
FF)−1S

(i)
FF (S

(i)
FF+S

(j)
FF)−1S

(j)
FF (w

(i)
F −w

(ji
F)).

Add similar expression for the subdomain Ωj . More algebra
gives the bound:

(w
(i)
F − w

(j)
F)TS

(i)
FF : S

(j)
FF (w

(i)
F − w

(ji
F))

where
A : B := (A−1 + B−1)−1

is known as a parallel sum.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Proof continued

Lemma

Let A and B be two symmetric positive semi-definite matrices of
the same order. Then, zTA : Bz = infz=x+y (xTAx + yTBy).

Now use x := (w (i) − wΠ)F and y := −(w (j) − wΠ)F to
obtain bounds for single subdomains.

Remains to estimate (w (i) − wΠ)TF S
(i)
FF (w (i) − wΠ)F by

w (i)TS (i)w (i) choosing a good shift with an element of the
primal space.
Routine for H1: completely standard estimates in the domain
decomposition literature: Face lemma; compare energy of zero
extension of face values by zero with that of the minimal
energy extension. Factor of C (1 + log(H/h))2 results.
Also estimate contributions from subdomain edges, etc. For
many edges, more than two Schur complements enters in in
the averages. Bound but with small integer factors.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Proof continued

Lemma

Let A and B be two symmetric positive semi-definite matrices of
the same order. Then, zTA : Bz = infz=x+y (xTAx + yTBy).

Now use x := (w (i) − wΠ)F and y := −(w (j) − wΠ)F to
obtain bounds for single subdomains.

Remains to estimate (w (i) − wΠ)TF S
(i)
FF (w (i) − wΠ)F by

w (i)TS (i)w (i) choosing a good shift with an element of the
primal space.
Routine for H1: completely standard estimates in the domain
decomposition literature: Face lemma; compare energy of zero
extension of face values by zero with that of the minimal
energy extension. Factor of C (1 + log(H/h))2 results.
Also estimate contributions from subdomain edges, etc. For
many edges, more than two Schur complements enters in in
the averages. Bound but with small integer factors.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Proof continued

Lemma

Let A and B be two symmetric positive semi-definite matrices of
the same order. Then, zTA : Bz = infz=x+y (xTAx + yTBy).

Now use x := (w (i) − wΠ)F and y := −(w (j) − wΠ)F to
obtain bounds for single subdomains.

Remains to estimate (w (i) − wΠ)TF S
(i)
FF (w (i) − wΠ)F by

w (i)TS (i)w (i) choosing a good shift with an element of the
primal space.

Routine for H1: completely standard estimates in the domain
decomposition literature: Face lemma; compare energy of zero
extension of face values by zero with that of the minimal
energy extension. Factor of C (1 + log(H/h))2 results.
Also estimate contributions from subdomain edges, etc. For
many edges, more than two Schur complements enters in in
the averages. Bound but with small integer factors.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Proof continued

Lemma

Let A and B be two symmetric positive semi-definite matrices of
the same order. Then, zTA : Bz = infz=x+y (xTAx + yTBy).

Now use x := (w (i) − wΠ)F and y := −(w (j) − wΠ)F to
obtain bounds for single subdomains.

Remains to estimate (w (i) − wΠ)TF S
(i)
FF (w (i) − wΠ)F by

w (i)TS (i)w (i) choosing a good shift with an element of the
primal space.
Routine for H1: completely standard estimates in the domain
decomposition literature: Face lemma; compare energy of zero
extension of face values by zero with that of the minimal
energy extension. Factor of C (1 + log(H/h))2 results.

Also estimate contributions from subdomain edges, etc. For
many edges, more than two Schur complements enters in in
the averages. Bound but with small integer factors.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Proof continued

Lemma

Let A and B be two symmetric positive semi-definite matrices of
the same order. Then, zTA : Bz = infz=x+y (xTAx + yTBy).

Now use x := (w (i) − wΠ)F and y := −(w (j) − wΠ)F to
obtain bounds for single subdomains.

Remains to estimate (w (i) − wΠ)TF S
(i)
FF (w (i) − wΠ)F by

w (i)TS (i)w (i) choosing a good shift with an element of the
primal space.
Routine for H1: completely standard estimates in the domain
decomposition literature: Face lemma; compare energy of zero
extension of face values by zero with that of the minimal
energy extension. Factor of C (1 + log(H/h))2 results.
Also estimate contributions from subdomain edges, etc. For
many edges, more than two Schur complements enters in in
the averages. Bound but with small integer factors.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Adaptive choice of primal spaces

The subdomain bounds can be expressed in terms of Schur
complements of Schur complements

S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F

where F ′ := Γi \ F .

The relevant bound is given by the generalized eigenvalue
problem

S
(i)
FF : S

(j)
FFψ = νS̆

(i)
FF : S̆

(j)
FFψ.

We can now improve the bound by incorporating the
eigenvectors of the largest eigenvalues into the primal space.

Similar devices, so far not equally appealing, have been
developed for equivalence classes with more than two
elements. Pechstein and Dohrmann ETNA 46 pp. 273-336.

For H(div) there are no such classes; Oh et al, Math. Comp.

87(310). Works well for nasty coefficients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Adaptive choice of primal spaces

The subdomain bounds can be expressed in terms of Schur
complements of Schur complements

S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F

where F ′ := Γi \ F .
The relevant bound is given by the generalized eigenvalue
problem

S
(i)
FF : S

(j)
FFψ = νS̆

(i)
FF : S̆

(j)
FFψ.

We can now improve the bound by incorporating the
eigenvectors of the largest eigenvalues into the primal space.

Similar devices, so far not equally appealing, have been
developed for equivalence classes with more than two
elements. Pechstein and Dohrmann ETNA 46 pp. 273-336.

For H(div) there are no such classes; Oh et al, Math. Comp.

87(310). Works well for nasty coefficients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Adaptive choice of primal spaces

The subdomain bounds can be expressed in terms of Schur
complements of Schur complements

S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F

where F ′ := Γi \ F .
The relevant bound is given by the generalized eigenvalue
problem

S
(i)
FF : S

(j)
FFψ = νS̆

(i)
FF : S̆

(j)
FFψ.

We can now improve the bound by incorporating the
eigenvectors of the largest eigenvalues into the primal space.

Similar devices, so far not equally appealing, have been
developed for equivalence classes with more than two
elements. Pechstein and Dohrmann ETNA 46 pp. 273-336.

For H(div) there are no such classes; Oh et al, Math. Comp.

87(310). Works well for nasty coefficients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Adaptive choice of primal spaces

The subdomain bounds can be expressed in terms of Schur
complements of Schur complements

S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F

where F ′ := Γi \ F .
The relevant bound is given by the generalized eigenvalue
problem

S
(i)
FF : S

(j)
FFψ = νS̆

(i)
FF : S̆

(j)
FFψ.

We can now improve the bound by incorporating the
eigenvectors of the largest eigenvalues into the primal space.

Similar devices, so far not equally appealing, have been
developed for equivalence classes with more than two
elements. Pechstein and Dohrmann ETNA 46 pp. 273-336.

For H(div) there are no such classes; Oh et al, Math. Comp.

87(310). Works well for nasty coefficients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Adaptive choice of primal spaces

The subdomain bounds can be expressed in terms of Schur
complements of Schur complements

S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F

where F ′ := Γi \ F .
The relevant bound is given by the generalized eigenvalue
problem

S
(i)
FF : S

(j)
FFψ = νS̆

(i)
FF : S̆

(j)
FFψ.

We can now improve the bound by incorporating the
eigenvectors of the largest eigenvalues into the primal space.

Similar devices, so far not equally appealing, have been
developed for equivalence classes with more than two
elements. Pechstein and Dohrmann ETNA 46 pp. 273-336.

For H(div) there are no such classes; Oh et al, Math. Comp.

87(310). Works well for nasty coefficients.

Olof B. Widlund BDDC Domain Decomposition Algorithms

How to deal with primal spaces that are too large?

The primal space, which generates a global problem, can
create a bottle-neck when solving very large problems on
computer systems with very many processors.

This problem has been and remains a focus of many studies of
BDDC and FETI–DP.

One way of dealing with this is to introduce a third or even
more levels. Very interesting proof that it works well is due to
Xuemin Tu. PETSc code by Stefano Zampini has been quite
successful and has been combined with adaptive choices of
primal spaces, e.g., for H(div) and H(curl) problems.

Choosing a standard primal space based on vertex variables
only leads to poor performance for 3D. However, in a paper,
in progress by Dohrmann, Pierson, and OBW, it will be shown
that in many cases, the primal problem can be solved
approximately and very effectively using a coarse space of that
same small dimension.

Olof B. Widlund BDDC Domain Decomposition Algorithms

How to deal with primal spaces that are too large?

The primal space, which generates a global problem, can
create a bottle-neck when solving very large problems on
computer systems with very many processors.

This problem has been and remains a focus of many studies of
BDDC and FETI–DP.

One way of dealing with this is to introduce a third or even
more levels. Very interesting proof that it works well is due to
Xuemin Tu. PETSc code by Stefano Zampini has been quite
successful and has been combined with adaptive choices of
primal spaces, e.g., for H(div) and H(curl) problems.

Choosing a standard primal space based on vertex variables
only leads to poor performance for 3D. However, in a paper,
in progress by Dohrmann, Pierson, and OBW, it will be shown
that in many cases, the primal problem can be solved
approximately and very effectively using a coarse space of that
same small dimension.

Olof B. Widlund BDDC Domain Decomposition Algorithms

How to deal with primal spaces that are too large?

The primal space, which generates a global problem, can
create a bottle-neck when solving very large problems on
computer systems with very many processors.

This problem has been and remains a focus of many studies of
BDDC and FETI–DP.

One way of dealing with this is to introduce a third or even
more levels. Very interesting proof that it works well is due to
Xuemin Tu. PETSc code by Stefano Zampini has been quite
successful and has been combined with adaptive choices of
primal spaces, e.g., for H(div) and H(curl) problems.

Choosing a standard primal space based on vertex variables
only leads to poor performance for 3D. However, in a paper,
in progress by Dohrmann, Pierson, and OBW, it will be shown
that in many cases, the primal problem can be solved
approximately and very effectively using a coarse space of that
same small dimension.

Olof B. Widlund BDDC Domain Decomposition Algorithms

How to deal with primal spaces that are too large?

The primal space, which generates a global problem, can
create a bottle-neck when solving very large problems on
computer systems with very many processors.

This problem has been and remains a focus of many studies of
BDDC and FETI–DP.

One way of dealing with this is to introduce a third or even
more levels. Very interesting proof that it works well is due to
Xuemin Tu. PETSc code by Stefano Zampini has been quite
successful and has been combined with adaptive choices of
primal spaces, e.g., for H(div) and H(curl) problems.

Choosing a standard primal space based on vertex variables
only leads to poor performance for 3D. However, in a paper,
in progress by Dohrmann, Pierson, and OBW, it will be shown
that in many cases, the primal problem can be solved
approximately and very effectively using a coarse space of that
same small dimension.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Outline of recent work

A two-level BDDC preconditioner in additive form:

M−1 = M−1
local + ΦDK

−1
c ΦT

D ,

where Kc is the coarse matrix and ΦD is a weighted
interpolation matrix.

Let M−1
c be a preconditioner for Kc and for 0 < β1 ≤ β2

β1u
T
c K
−1
c uc ≤ uTc M

−1
c uc ≤ β2u

T
c K
−1
c uc ∀uc .

We easily find that κa ≤ max(1,β2)
min(1,β1) κ.

Choose M−1
c = ΨK−1

cr ΨT + diag(Kc)−1 where
Kcr := ΨTKcΨ. (Point Jacobi + coarse correction.)

The hard part is to estimate β1; for an important case, the
result by Tu and ultimately Brenner again comes into play.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Outline of recent work

A two-level BDDC preconditioner in additive form:

M−1 = M−1
local + ΦDK

−1
c ΦT

D ,

where Kc is the coarse matrix and ΦD is a weighted
interpolation matrix.

Let M−1
c be a preconditioner for Kc and for 0 < β1 ≤ β2

β1u
T
c K
−1
c uc ≤ uTc M

−1
c uc ≤ β2u

T
c K
−1
c uc ∀uc .

We easily find that κa ≤ max(1,β2)
min(1,β1) κ.

Choose M−1
c = ΨK−1

cr ΨT + diag(Kc)−1 where
Kcr := ΨTKcΨ. (Point Jacobi + coarse correction.)

The hard part is to estimate β1; for an important case, the
result by Tu and ultimately Brenner again comes into play.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Outline of recent work

A two-level BDDC preconditioner in additive form:

M−1 = M−1
local + ΦDK

−1
c ΦT

D ,

where Kc is the coarse matrix and ΦD is a weighted
interpolation matrix.

Let M−1
c be a preconditioner for Kc and for 0 < β1 ≤ β2

β1u
T
c K
−1
c uc ≤ uTc M

−1
c uc ≤ β2u

T
c K
−1
c uc ∀uc .

We easily find that κa ≤ max(1,β2)
min(1,β1) κ.

Choose M−1
c = ΨK−1

cr ΨT + diag(Kc)−1 where
Kcr := ΨTKcΨ. (Point Jacobi + coarse correction.)

The hard part is to estimate β1; for an important case, the
result by Tu and ultimately Brenner again comes into play.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Outline of recent work

A two-level BDDC preconditioner in additive form:

M−1 = M−1
local + ΦDK

−1
c ΦT

D ,

where Kc is the coarse matrix and ΦD is a weighted
interpolation matrix.

Let M−1
c be a preconditioner for Kc and for 0 < β1 ≤ β2

β1u
T
c K
−1
c uc ≤ uTc M

−1
c uc ≤ β2u

T
c K
−1
c uc ∀uc .

We easily find that κa ≤ max(1,β2)
min(1,β1) κ.

Choose M−1
c = ΨK−1

cr ΨT + diag(Kc)−1 where
Kcr := ΨTKcΨ. (Point Jacobi + coarse correction.)

The hard part is to estimate β1; for an important case, the
result by Tu and ultimately Brenner again comes into play.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Almost incompressible elasticity

How to develop good domain decomposition algorithms for
mixed methods for almost incompressible elasticity and
incompressible Stokes problems when the pressure variable p
is continuous? Open problem for quite some time.

If the pressure is discontinuous, the elasticity problem can be
reduced to a positive definite problem by eliminating the
pressure on the element level.

Discrete saddle point system:[
µA BT

B − 1
λC

] [
uh
ph

]
=

[
fh
0

]
,

where A,B, and C are the matrices associated with the
bilinear forms of the mixed formulation of almost
incompressible elasticity. µ and λ the Lamé parameters.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Almost incompressible elasticity

How to develop good domain decomposition algorithms for
mixed methods for almost incompressible elasticity and
incompressible Stokes problems when the pressure variable p
is continuous? Open problem for quite some time.

If the pressure is discontinuous, the elasticity problem can be
reduced to a positive definite problem by eliminating the
pressure on the element level.

Discrete saddle point system:[
µA BT

B − 1
λC

] [
uh
ph

]
=

[
fh
0

]
,

where A,B, and C are the matrices associated with the
bilinear forms of the mixed formulation of almost
incompressible elasticity. µ and λ the Lamé parameters.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Almost incompressible elasticity

How to develop good domain decomposition algorithms for
mixed methods for almost incompressible elasticity and
incompressible Stokes problems when the pressure variable p
is continuous? Open problem for quite some time.

If the pressure is discontinuous, the elasticity problem can be
reduced to a positive definite problem by eliminating the
pressure on the element level.

Discrete saddle point system:[
µA BT

B − 1
λC

] [
uh
ph

]
=

[
fh
0

]
,

where A,B, and C are the matrices associated with the
bilinear forms of the mixed formulation of almost
incompressible elasticity. µ and λ the Lamé parameters.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Block FETI-DP preconditioner a la Tu and Li, 2015

Split displacement into interior, dual, and primal components:

uh = (uI ,u∆,uΠ),

and pressure into interiors and, interface components:

ph = (pI , pΓ),

and introduce λ∆ = Lagrange multipliers used to enforce the
continuity of the dual displacements in the limit.

Permute the saddle point system to the form:

µAII BT
II µAI∆ µAIΠ BT

ΓI 0
BII − 1

λCII BT
∆I BT

ΠI − 1
λCIΓ 0

µA∆I B∆I µA∆∆ µA∆Π BT
Γ∆ BT

∆

µAΠI BΠI µAΠ∆ µAΠΠ BT
ΓΠ 0

BΓI − 1
λCΓI BΓ∆ BΓΠ − 1

λCΓΓ 0
0 0 B∆ 0 0 0

uI
pI
u∆

uΠ

pΓ

λ∆

=

fI
0
f∆
fΠ
0
0

Olof B. Widlund BDDC Domain Decomposition Algorithms

Block FETI-DP preconditioner a la Tu and Li, 2015

Split displacement into interior, dual, and primal components:

uh = (uI ,u∆,uΠ),

and pressure into interiors and, interface components:

ph = (pI , pΓ),

and introduce λ∆ = Lagrange multipliers used to enforce the
continuity of the dual displacements in the limit.

Permute the saddle point system to the form:

µAII BT
II µAI∆ µAIΠ BT

ΓI 0
BII − 1

λCII BT
∆I BT

ΠI − 1
λCIΓ 0

µA∆I B∆I µA∆∆ µA∆Π BT
Γ∆ BT

∆

µAΠI BΠI µAΠ∆ µAΠΠ BT
ΓΠ 0

BΓI − 1
λCΓI BΓ∆ BΓΠ − 1

λCΓΓ 0
0 0 B∆ 0 0 0

uI
pI
u∆

uΠ

pΓ

λ∆

=

fI
0
f∆
fΠ
0
0

Olof B. Widlund BDDC Domain Decomposition Algorithms

Block FETI-DP preconditioners

After a block Gaussian elimination step, a Schur complement
−G , which is negative definite and a reduced system.

FETI-DP type system

G

[
pΓ

λ∆

]
= g . (3)

IGA block FETI-DP preconditioner for the reduced system (3)

M−1
D =

[
M−1

pΓ
0

0 M−1
λ∆

]
,

M−1
pΓ

= µ times the inverse of Schur complement of C or use

BDDC. M−1
λ∆

essentially the same as for compressible elasticity.

Olof B. Widlund BDDC Domain Decomposition Algorithms

Block FETI-DP preconditioners

After a block Gaussian elimination step, a Schur complement
−G , which is negative definite and a reduced system.

FETI-DP type system

G

[
pΓ

λ∆

]
= g . (3)

IGA block FETI-DP preconditioner for the reduced system (3)

M−1
D =

[
M−1

pΓ
0

0 M−1
λ∆

]
,

M−1
pΓ

= µ times the inverse of Schur complement of C or use

BDDC. M−1
λ∆

essentially the same as for compressible elasticity.

Olof B. Widlund BDDC Domain Decomposition Algorithms

